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CONVECTIVE STABILIZATION OF A LAPLACIAN MOVING
BOUNDARY PROBLEM WITH KINETIC UNDERCOOLING∗

UTE EBERT† , BERNARD MEULENBROEK‡ , AND LOTHAR SCHÄFER§

Abstract. We study the shape stability of disks moving in an external Laplacian field in two
dimensions. The problem is motivated by the motion of ionization fronts in streamer-type electric
breakdown. It is mathematically equivalent to the motion of a small bubble in a Hele–Shaw cell
with a regularization of kinetic undercooling type, namely, a mixed Dirichlet–Neumann boundary
condition for the Laplacian field on the moving boundary. Using conformal mapping techniques,
linear stability analysis of the uniformly translating disk is recast into a single PDE which is exactly
solvable for certain values of the regularization parameter. We concentrate on the physically most
interesting exactly solvable and nontrivial case. We show that the circular solutions are linearly stable
against smooth initial perturbations. In the transformation of the PDE to its normal hyperbolic form,
a semigroup of automorphisms of the unit disk plays a central role. It mediates the convection of
perturbations to the back of the circle where they decay. Exponential convergence to the unperturbed
circle occurs along a unique slow manifold as time t → ∞. Smooth temporal eigenfunctions cannot
be constructed, but excluding the far back part of the circle, a discrete set of eigenfunctions does
span the function space of perturbations. We believe that the observed behavior of a convectively
stabilized circle for a certain value of the regularization parameter is generic for other shapes and
parameter values. Our analytical results are illustrated by figures of some typical solutions.
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1. Introduction.

1.1. Problem formulation in physical and mathematical context. The
mathematical model considered in this paper is motivated by the physics of electric
breakdown of simple gases like nitrogen or argon [1, 2, 3, 4, 5]. During the initial
“streamer” phase of spark formation, a weakly ionized region extends in a strong
externally applied electric field. As the ionized cloud is electrically conducting, it
screens the electric field from its interior by forming a thin surface charge layer.
This charged layer moves by electron drift within the local electric field and creates
additional ionization, i.e., additional electron-ion pairs, by collisions of fast electrons
with neutral molecules. We here approximate the ionized and hence conducting bulk
of the streamer as equipotential. In the nonionized and hence electrically neutral
region outside the streamer, the electric field obeys the Laplace equation. The thin
surface charge layer can be approximated as an interface which moves according to
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the electric field extrapolated from the neutral region onto the interface. We therefore
are concerned with a typical moving boundary problem.

Such moving boundary problems occur in various branches of physics, chemistry,
or biology. The most extensively studied examples are viscous fingering observed in
two-fluid flows [6] or the Stefan problem of solidification from an undercooled melt [7].
Other physical phenomena like the motion of voids in current carrying metal films [8]
lead to similar mathematical models [9].

We here discuss the streamer model in two spatial dimensions, where in the
simplest “unregularized” version the basic equations coincide with those describing the
motion of a small bubble in a liquid streaming through a Hele–Shaw cell [10, 11, 12, 13],
which is a special case of two-fluid flow. The unregularized streamer model has been
discussed in [4, 14]. Restriction to two dimensions in space allows us to use standard
conformal mapping techniques [6, 15] to reduce the moving boundary problem to the
analysis of the time dependence of the conformal map that maps the unit disk to the
exterior of the streamer.

It is well known that unregularized moving boundary problems of this type are
mathematically ill posed [15], in the sense that the moving interface generically de-
velops cusps within finite time which leads to a breakdown of the model. To suppress
such unphysical behavior, the models are regularized by imposing nontrivial boundary
conditions on the interface. For viscous fingering typically some curvature correction
to the interfacial energy is considered. For the streamer problem a mixed Dirichlet–
Neumann boundary condition can be derived [14, 16] by analyzing the variation of the
electric potential across the screening layer. Such a boundary condition is well known
from the Stefan problem, where it is termed “kinetic undercooling.” It rarely has
been considered for Hele–Shaw-type problems. There are strong hints [15, 17, 18, 19]
but no clear proof that it suppresses cusp formation. In particular, it has been shown
that an initially smooth interface stays smooth for some finite time interval.

Here we consider the linear stability of uniformly translating circles in a Lapla-
cian potential ϕ that approaches a constant slope ϕ ∝ x far from the circle; this
means that the electric field E = −∇ϕ is constant far from the circle. Though this
field breaks radial symmetry, uniformly translating circles are exact solutions of the
regularized problem [14]. However, perturbations of these circles do not simply grow
or decay locally as on a planar front or on circles in a radially symmetric force field
[17, 18], but are also convected along the boundary; this convection turns out to be a
determining part of the dynamics. Though physical streamers are elongated objects
frequently connected to an electrode, the front part of a streamer is well approxi-
mated by a circular shape. Since it is this part that determines the dynamics, our
analysis should be relevant also for more realistic shapes like fingers where no closed
analytical solutions of the regularized uniformly translating shape are known [19]. In
what follows we will use the term “streamer” to denote the translating circles, being
aware that this is a slight abuse of the term.

1.2. Overview of content and structure of the paper. Regularization of
the streamer model introduces some parameter ε that measures the effective width of
the interface relative to the typical size of the ionized region. The regularized problem
allows for a class of solutions of the form of uniformly translating circles, and linear
stability analysis of these solutions can be reduced to solving a single PDE. For the
special case ε = 1, the general solution of this PDE can be found analytically, as we
briefly discussed in [14]. The present paper is restricted to this special case as well.

The main results of the letter [14] are the following: The dynamics of infinitesi-
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mal perturbations is governed by a subgroup of the automorphisms of the unit disk.
Generically, these automorphisms convect the perturbations to the back of the moving
body. Initially, perturbations might grow, but they decay exponentially for t → ∞.
Furthermore, this final convergence back to the unperturbed circle follows some uni-
versal slow manifold.

The present paper contains a detailed derivation, discussion, and extension of the
results presented in [14]. Furthermore, the analyticity and completeness of temporal
eigenfunctions and the Fourier decomposition of perturbations are discussed, limit
cases of the dynamics are worked out analytically, and results are demonstrated in a
set of figures.

In detail, the time evolution determined by a PDE is often analyzed in terms of
temporal eigenfunctions. For the present problem in a space of functions representing
smooth initial perturbations of the moving circle, no such eigenfunctions exist. They
can be constructed only if we allow for singularities on the boundary. We find here that
a subset of these functions with time dependence e−nτ , n ∈ N0, is intimately related to
the asymptotic convergence of the perturbations. These functions show singularities
only at the backside of the circle, and the front part of any smooth perturbation
can be expanded in this set of functions. The spatial domain of convergence of this
expansion increases with time and, asymptotically for t → ∞, it covers almost the
whole streamer. In this restricted sense these eigenfunctions form a complete set.

These results dealing with infinitesimal perturbations, of course, do not imply the
asymptotic stability of the circular shape against finite perturbations. To solve this
problem, the full nonlinear theory must be considered. Nevertheless, a first hint might
be gained by considering the evolution of a finite perturbation under the linearized
dynamics. Due to the conformal mapping involved, the absence of cusps under this
evolution is not a completely trivial question. We show here that for a large range of
smooth initial conditions, the shape of the streamer stays smooth under the linearized
dynamics.

All the present work deals with the exactly solvable case ε = 1, whereas the phys-
ically most interesting case is ε � 1. We believe, however, that the features we could
identify explicitly for ε = 1 are generic for all ε > 0. In particular, the subgroup of
automorphisms of the unit circle leads to the basic mechanism of convective stabi-
lization, it is for all ε > 0 intimately related to the characteristic curves of the PDE,
and it also governs the dynamics in another exactly solvable case, namely, for ε = ∞.
Furthermore, it can be shown [20] that the temporal eigenvalues λn(ε) emerging from
λn(1) = −n stay negative for all ε > 0, which also indicates that the circle might be
asymptotically stable for arbitrary ε > 0.

This paper is organized as follows. In section 2 we introduce the model, and the
linear stability analysis of translating circles is carried through in section 3. These
two sections are extended versions of [14]. Analytical results based on the PDE of
linear stability analysis are derived in section 4, in particular, center of mass motion,
internal motion, (non)analyticity and completeness of eigenfunctions, intermediate
growth and asymptotic decay of perturbations, Fourier representation, and motion
of nonanalytical points in the complex plane of the conformal map. These dynamic
features are illustrated by explicit examples in section 5. The appendix contains a
discussion of the case ε = ∞.

2. Physical model and conformal mapping approach.

2.1. The model. We assume the ionized bulk of the streamer to be a compact,
simply connected domain D̄i of the (x, y)-plane (see Figure 2.1). Outside the streamer,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVECTIVE STABILIZATION OF A MOVING BOUNDARY 295

Fig. 2.1. Geometry of the streamer model; �E is the constant far field.

i.e., in the open domain Dn, there are no charges and the electric potential obeys the
Laplace equation

(2.1) Δϕ = 0 for (x, y) ∈ Dn.

The streamer moves in an external electric field that becomes homogeneous far from
the ionized body; therefore the electric potential ϕ at infinity obeys the boundary
condition

(2.2) ϕ → E0x + const for
√

x2 + y2 → ∞.

This condition excludes a contribution to ϕ diverging as ln(x2 + y2), which implies
that the total charge due to the sum of all electrons and ions vanishes within D̄i and
that the far field has the form

�E = −∇ϕ → −E0x̂,

where x̂ is the unit vector in the x-direction. On the surface of the streamer we impose
the boundary condition

(2.3) ϕ = � n̂ · ∇ϕ,

where n̂ is the unit vector normal to the surface pointing into Dn. Here as well as in
(2.4) below it is understood that the surface is approached from Dn. As mentioned
in the introduction, this boundary condition results from the analysis of the variation
of the potential across the interface, and the length parameter � can be interpreted
as the effective thickness of the screening layer. The case � = 0 corresponds to the
unregularized case with a pure Dirichlet condition on the moving boundary. Dynamics
is introduced via the relation

(2.4) vn = n̂ · ∇ϕ,

which holds on the boundary and determines its normal velocity vn. This defines our
model. For further discussion of its physical background, we refer to [1, 2, 3, 4, 5, 16].
Now obviously, E0 can be absorbed into a rescaling of the potential ϕ and of the time
scale inherent in the velocity vn; therefore we henceforth take E0 = 1. Clearly the
model defined here is most similar to a model of the motion of a small bubble in a
Hele–Shaw cell [11, 12], except that the boundary condition (2.3) is of the form of a
kinetic undercooling condition [17, 18].
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2.2. Conformal mapping. A standard approach to such moving boundary
problems proceeds by conformal mapping [6, 14]. We identify the (x, y)-plane with
the closed complex plane z = x+ iy, and we define a conformal map f(ω, t) that maps
the unit disk Uω in the ω-plane to Dn in the z-plane, with ω = 0 being mapped on
z = ∞:

(2.5) z = f(ω, t) =
a−1(t)

ω
+ f̂(ω, t), a−1(t) > 0.

Here the function f̂ is holomorphic for ω ∈ Uω, and we assume that the deriva-
tives ∂n

ω of all orders n exist on the unit circle ∂Uω. This restricts our analysis to
smooth boundaries of the streamer. (Weaker assumptions on boundary behavior will
be discussed briefly in section 4.8.) We recall that the closed physical boundary can
now be retrieved as xα(t) = �f(eiα, t) and yα(t) = 	f(eiα, t)), where the interface
parametrization with the real variable α ∈ [0, 2π[ is fixed by the conformal map.

By virtue of (2.1), the potential ϕ restricted to Dn is a harmonic function; there-
fore it is the real part of some analytic function Φ̃(z, t), which under the conformal
map (2.5) transforms into

(2.6) Φ(ω, t) = Φ̃ (f(ω, t)) =
a−1(t)

ω
+ Φ̂(ω, t).

Here the holomorphic function Φ̂ obeys the same conditions as f̂ above. The pole
results from the boundary condition (2.2) with E0 = 1 and (2.5).

Conditions (2.3) and (2.4) take the form

|ω∂ωf | �[Φ] = −�� [ω∂ωΦ] for ω ∈ ∂Uω,(2.7)

�
[

∂tf

ω∂ωf

]
=

� [ω∂ωΦ]

|ω∂ωf |2
for ω ∈ ∂Uω.(2.8)

Equations (2.5)–(2.8) form the starting point of our analysis.

3. Linear stability analysis of translating circles.

3.1. Uniformly translating circles. A simple solution of (2.7), (2.8) takes the
form

(3.1)

⎧⎪⎪⎨
⎪⎪⎩

f (0)(ω, t) =
R

ω
+

2R

R + �
t,

Φ(0)(ω, t) = R

[
1

ω
− R− �

R + �
ω

]
.

In physical coordinates x and y, it describes circles of radius R > 0 centered at
x(t) = v0t and moving with velocity v0 = 2R/(R + �) in direction x̂. Thus the point
ω = 1 maps to a point at the front, and the point ω = −1 maps to a point at the
back of the streamer. These points will play a crucial role in our analysis.

We note that the one-parameter family (3.1) of solutions parametrized by R,
which is found in the regularized model, is a subset of the two-parameter family
found in the unregularized case � = 0. As is well known, for � = 0 all ellipses with
one axis parallel to x̂ are uniformly translating solutions [10].

3.2. Derivation of the operator Lε for linear stability analysis. We now
derive the equation governing the evolution of infinitesimal perturbations of the circles
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(3.1). In general, the parameter R can become time dependent. We use the ansatz

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(ω, t) =
R(t)

ω
+ x(t) + η β(ω, t) ,

Φ(ω, t) = R(t)

[
1

ω
− R(t) − �

R(t) + �
ω + η χ(ω, t)

]
,

∂tx(t) =
2R(t)

R(t) + �
, R(t) > 0,

where β and χ are holomorphic functions of ω and where η is a small parameter.
However, working to first order in η it is found that R stays constant. This results
from the fact that the dynamics embodied in (2.8) strictly conserves the area |D̄i| of
the streamer, which in this context is equivalent to the temporal conservation of the
zero order Richardson moment [13, 15, 21], but integrated over the complement of
Dn. In terms of the mapping f , the conserved area

∣∣D̄i

∣∣ can be written as

∣∣D̄i

∣∣ =

∣∣∣∣
∫ 2π

0

dα
(
�
[
f(eiα, t)

]
− x(t)

)
∂α	

[
f(eiα, t)

]∣∣∣∣
= πR2(t) − η2

∫ 2π

0

dα�
[
β(eiα, t)

]
∂α	

[
β(eiα, t)

]
.(3.3)

Now introducing the time independent length R0 through
∣∣D̄i

∣∣ = πR2
0, we find R(t) =

R0+O(η2), which proves that R is time independent within linear perturbation theory.
In what follows we will use R0 as our length scale, introducing

(3.4) ε =
�

R0
and τ =

2

1 + ε

t

R0
,

and rescaling f and Φ by factors 1/R0. We note that within a dimensionless time
interval τ of order unity, the streamer moves a distance of the order of its size.

With the thus simplified ansatz (3.2), equations (2.7) and (2.8) evaluated to first
order in η take the form

(3.5)

⎧⎪⎨
⎪⎩

�
[
ω(∂ω − ∂τ )β − 1 + ε

2
ω∂ωχ

]
= 0,

�
[
ε(ω2 + 1)ω∂ωβ − (1 + ε)(1 + εω∂ω)χ

]
= 0,

for ω ∈ ∂Uω.

Since β and χ are holomorphic for ω ∈ Uω, these equations imply

(3.6)

⎧⎨
⎩ ω(∂ω − ∂τ )β − 1 + ε

2
ω∂ωχ = 0,

ε(ω2 + 1)ω∂ωβ − (1 + ε)(1 + εω∂ω)χ = ia(t),
for ω ∈ Uω,

where a(t) is some real function of time. χ is eliminated by substituting the expressions
for ∂ωχ and ∂2

ωχ from the first equation and its derivative into the second equation
differentiated with respect to ω. This yields

(3.7) Lεβ = 0,

where Lε is the operator

(3.8) Lε =
ε

2
∂ω (ω2 − 1)ω ∂ω + ε ω∂ω∂τ + (1 + ε) ∂τ − ∂ω.
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3.3. Normal form of Lε and induced automorphisms of the unit disk. It
is instructive to transform Lε to the normal form of a hyperbolic differential operator.
We introduce

(3.9) T = tanh
τ

2
,

mapping the time interval τ ∈ [0,∞[ to T ∈ [0, 1[, and

(3.10) ζ =
ω + T

1 + ωT
,

to find

Lε = εh(ζ, T )∂T∂ζ +
∂h(ζ, T )

∂T
∂ζ + (1 + ε)∂T ,(3.11)

h(ζ, T ) =
ω

∂ζω
=

(ζ − T )(1 − Tζ)

1 − T 2
.(3.12)

This identifies the manifolds T = const or ζ = const as the characteristic manifolds
of our problem for all ε 
= 0.

As function of the “time-like” parameter T , 0 ≤ T < 1, the transformation
ζ = ζ(ω, T ) in (3.10) represents a semigroup of automorphisms of the unit disk, with
fixed points

ζ = ω = ±1.

For T → 1, corresponding to τ → ∞, all points ω 
= −1 are mapped into ζ = +1, so
that the large time behavior of any perturbation is governed by this attractive fixed
point.

3.4. Analytical solutions of (3.7) for special values of ε. The general
solution of (3.7) can be found analytically for the special values ε = 0, ε = ±1, and
ε = ∞. In the unregularized case ε = 0, evidently any function

β(ω, τ) = β̃(ω + τ)

is a solution, and any singularity of β̃ found in the strip

0 < �[ω] < ∞, −1 ≤ 	[ω] ≤ 1,

will lead to a breakdown of perturbation theory within finite time. This is the finger-
print of the ill-posedness of the problem for ε = 0.

For ε = −1, β(ω, τ) generically for all τ > 0 has a logarithmic singularity at
ω = −T (τ). We recall that negative values of ε = �/R0 imply negative thickness of
the screening layer and thus are of no physical interest.

The case ε = +1 is discussed in detail in the remainder of the paper. Though
a regularization length � identical to the object size R0 is somewhat artificial, it is
accessible to rigorous analytical treatment and, as explained in section 1.2, we expect
it to reveal generic features of the behavior for all ε > 0.

This is supported by the results for ε = ∞ which show essentially the same
features as the results for ε = 1 below. Though the limit ε → ∞ is physically absurd
when applied to streamers, it is worth studying with respect to the properties of the
operator Lε, and we present a short discussion in the appendix.
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4. Strong screening: Analytical results for ε = 1.

4.1. Analytical solution of the general initial value problem. With the
form (3.11) of Lε, the PDE (3.7) for ε = 1 reduces to

(4.1) ∂T (2 + h(ζ, T )∂ζ)β = 0,

showing that the function

(4.2) G(ζ) = (2 + h(ζ, T )∂ζ)β

is independent of T . To determine β, we use (3.12), h(ζ, T ) = ω/∂ζω, to find

(4.3) (2 + ω∂ω)β(ω, τ) = G(ζ), ζ = ζ(ω, T (τ)).

The solution regular at ω = 0 takes the form

(4.4) β(ω, τ) =

∫ ω

0

x dx

ω2
G

(
x + T (τ)

1 + xT (τ)

)
.

A second independent solution is singular in ω = 0:

(4.5) βsing(ω, τ) ≡ 1

ω2
.

The function G in the regular solution (4.4) is determined by the initial condition
β(ω, 0) through

(4.6) G(ω) = (2 + ω∂ω)β(ω, 0).

It thus is holomorphic for ω in the unit disk Uω, and all derivatives exist on ∂Uω, since
we assume the initial surface to be smooth. Equation (4.4) then shows that β(ω, τ)
inherits these properties for all τ < ∞.

4.2. Automorphism of the unit disk and a bound on the perturbation.
It is now clear that the automorphisms ζ(ω, T ) of Uω from (3.12) contain the basic
dynamics, and, as shown in the appendix, this also holds for ε = ∞. This is to be
contrasted to the unregularized case ε = 0, where the dynamics amounts to a trans-
lation of the unit disk. With the present dynamics, in the course of time larger and
larger parts U(δ) of the unit disk Uω are mapped to an arbitrarily small neighbor-
hood |ζ − 1| < δ of the attractive fixed point ζ = 1. According to (4.4) and (4.6),
the initial condition in the neighborhood |ω − 1| < δ then determines the evolution
of β(ω, τ) in all U(δ). As a consequence, any pronounced structure found initially
near ω0, |ω0 − 1| > δ, is convected towards ω = −1. Quantitatively this behavior is
embodied in (4.17) below, and explicit examples will be presented in section 5; see,
in particular, Figure 5.4(b).

For the further discussion we normalize G(ω) so that

(4.7) max
|ω|=1

|G(ω)| = 1.

Equations (4.4), (4.7) yield a bound on β(ω, τ):

(4.8) |β(ω, τ)| ≤ 1

2
, |ω| ≤ 1, 0 ≤ T ≤ 1.

Thus the perturbation can shift the position of the streamer by at most η/2, and
therefore it cannot affect the asymptotic velocity of the propagation.
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4.3. Center of mass motion for 0 ≤ τ < ∞. In precise terms the position
of the streamer can be defined as the center of mass

(4.9) zcm = xcm + iycm =
1

|D̄i|

∫
Di

dx dy (x + iy),

where the integral is related to the first order Richardson moment. Evaluating (4.9)
and (4.4), we find to first order in η

zcm = τ + η β(0, τ),(4.10)

β(0, τ) =
G(T (τ))

2
.(4.11)

Here τ is the uniform translation of the unperturbed circle. The additional center
of mass motion (4.11) for all times is explicitly given by the initial condition β(ω, 0)
through (4.6) and the transformed time variable T (τ) from (3.9); for τ → ∞, it
approaches β(0, τ) → G(1)/2.

4.4. Internal motion: Convergence along a universal slow manifold for
τ → ∞. We now concentrate on the perturbation of the circular shape, given by

(4.12) β̃(ω, τ) = β(ω, τ) − β(0, τ).

The explicit expression

(4.13) β̃(ω, τ) =

∫ 1

0

dρ ρ

[
G

(
ρω + T

1 + ρωT

)
−G(T )

]

yields

(4.14) lim
τ→∞

β̃(ω, τ) = 0

for arbitrary G, i.e., for arbitrary initial condition (4.6). Thus the shape perturbation
converges to zero as τ → ∞, and the circular shape is linearly stable.

We note that this holds despite the fact that the limits ω → −1 and τ → ∞ (i.e.,
T → 1) do not commute:

lim
T→1

lim
ω→−1

G(ζ(ω, T )) = G(−1),

lim
ω→−1

lim
T→1

G(ζ(ω, T )) = G(+1).

This peculiar behavior near the backside of the streamer, at ω = −1, shows up only
in the rate of convergence.

Investigating the rate of convergence for τ → ∞, we first exclude a neighborhood
of ω = −1 and expand G in the integral (4.13) as

G

(
ρω + T

1 + ρωT

)
= G(T ) + (1 − T 2)

ρω

1 + ρωT
G′(T ) + O(1 − T 2)2,

where G′(ω) = ∂ωG(ω).

With

1 − T 2 = 4e−τ + O(e−2τ ),
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the integral yields

(4.15)
β̃(ω, τ)

G′(1)
=

4

ω2

[
ln(1 + ω) − ω +

ω2

2

]
e−τ + O(e−2τ ),

valid for

|1 + ω|  |ω|e−τ .

Thus outside the immediate neighborhood of ω = −1, the shape for all smooth initial
conditions with G′(1) 
= 0 converges exponentially in time as e−τ along a universal
path in function space, given in (4.15). For G′(1) = 0 the first nonvanishing term in
the expansion of G dominates the convergence.

To analyze the neighborhood of ω = −1 we take the limit τ → ∞, with

(4.16) s = (1 + ω)eτ

fixed. We find

β̃(ω, τ)

G′(1)
= 4 (ln(2 + s) − τ) e−τ

+

{
2G′(1) + 4 ln

(
2 + s

4

)(
G′

(
s− 2

s + 2

)
−G′(1)

)

+ (2 + s)

(
G(1) −G

(
s− 2

s + 2

))
− 4

∫ 4/(2+s)

0

dy ln y G′′(1 − y)

}
e−τ

G′(1)

+ O
(
τe−2τ

)
.(4.17)

In terms of ω, the first contribution on the right-hand side takes the form

4 (ln(2 + s) − τ) e−τ = 4e−τ ln
(
2e−τ + 1 + ω

)
,

which shows that a logarithmic cut of β̃(ω, τ) reaches ω = −1 for τ → ∞, but with a
prefactor vanishing exponentially in that limit. We thus have found a weak anomaly
of the asymptotic relaxation near ω = −1: In a spatial neighborhood of order e−τ the
exponential relaxation is modified by a factor τ . Furthermore, as mentioned above,
all the initial structure of β(ω, 0) is compressed into that region. This is obvious from
the occurrence of G

(
s−2
s+2

)
etc. in (4.17).

To summarize, we have found that the shape of the interface for τ → ∞ converges
to the circle along a universal slow manifold (4.15), except for a weak anomaly (4.17)
at the backside at ω = −1.

4.5. (Non)analyticity of temporal eigenfunctions. In many cases, a full
dynamical solution for arbitrary initial values cannot be found, and rather temporal
eigenfunctions are searched for. However, in the present problem, functions β(ω, τ)
resulting from smooth initial conditions cannot exhibit exponential behavior in time
for all τ , 0 ≤ τ < ∞. This is seen easily by introducing

(4.18) G(x) = Ĝ

(
x− 1

x + 1

)
,
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writing G(ζ) in the equivialent form

(4.19) G

(
ω + T

1 + ωT

)
= Ĝ

(
ω − 1

ω + 1
e−τ

)
,

and substituting this form into (4.4). Postulating strict exponential time behavior
β ∼ e−λτ , one finds

(4.20) β(ω, τ) ∝ eλτ βλ(ω), βλ(ω) =

∫ 1

0

dρ ρ

(
ωρ− 1

ωρ + 1

)λ

.

Any eigenfunction βλ(ω, 0) with λ 
= 0 clearly is singular at ω = +1, at ω = −1, or at
both points. It therefore conflicts with smooth initial conditions. On the other hand,
omitting a neighborhood of ω = −1, eigenfunctions exist for all −λ ∈ N0.

4.6. Completeness of the eigenfunctions near ω = 1. In some neighbor-
hood of ω = 1, we can even show that any regular solution β(ω, τ) can be expanded in
terms of the “eigenfunctions” β−n(ω), n ∈ N0. This results from the Taylor expansion

(4.21) Ĝ(y) =
∞∑

n=0

ĝny
n,

which by assumption converges in a disk of radius r̂ > 0. Rewriting (4.4) as

β(ω, τ) =

∫ 1

0

x dx

ω2
G

(
x + T

1 + xT

)
−
∫ 1

ω

x dx

ω2
G

(
x + T

1 + xT

)

=
M(T )

ω2
−

∞∑
n=0

ĝn e
−nτ

∫ 1

ω

x dx

ω2

(
1 − x

1 + x

)n

(4.22)

and β−n(ω) in a similar form as

(4.23) β−n(ω) =
Mn

ω2
−
∫ 1

ω

x dx

ω2

(
1 − x

1 + x

)n

,

we find

(4.24) β(ω, τ) =
M(T )

ω2
+

∞∑
n=0

ĝn

[
β−n(ω) − Mn

ω2

]
e−nτ .

Provided that e−τ < r̂, we can separate the sum into the contribution ∝ 1/ω2 and the
rest. Since both β(ω, τ) and β−n(ω) are regular at ω = 0, the contributions ∝ 1/ω2

have to cancel, which yields the final result

(4.25) β(ω, τ) =

∞∑
n=0

ĝn β−n(ω) e−nτ .

This result is valid for e−τ < r̂ in the disk∣∣∣∣1 − ω

1 + ω

∣∣∣∣ e−τ < r̂.

It generalizes the asymptotic result (4.15). Indeed, the universal shape relaxation
found in (4.15) together with the center of mass relaxation (4.11) precisely follows the
slowest eigenfunction from (4.21) with λ = −n = −1. Furthermore this result shows
that the range of validity of the expansion (4.25) increases with τ and asymptotically
covers the whole complex plane except for the special point ω = −1.
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-6 -4 -2 2 4

0.1

0.2

Fig. 4.1. β̃(eiα, τ) from (4.27) for α = 0 as a function of subtracted time θ = τ − ln 2k.

4.7. Intermediate temporal growth and coupling of Fourier modes.
Having found that the space of regular functions does not allow for strictly exponential
time behavior, we now consider the typical time variation of smooth perturbations.
Before the exponential relaxation sets in, such perturbations typically will grow, and
this growth can be quite dramatic. As an illustration we consider a perturbation
defined by

G(ω) = ωk, k  1,

corresponding to initial conditions

(4.26) β(ω, 0) =
ωk

k + 2
.

For T = 1 − e−θ/k, corresponding to times τ = θ + ln(2k) + O(1/k), we can write

G

(
ω + T

1 + ωT

)
=

(
1 − e−θ

1+ω
1
k

1 − ωe−θ

1+ω
1
k

)k

= exp

[
−e−θ 1 − ω

1 + ω

](
1 + O

(
1

k

))
,

where we again exclude some neighborhood of ω = −1. Substituting this expression
into (4.13), we find on the unit circle ω = eiα

β̃(eiα, τ)

=

∫ 1

0

dρ ρ exp

[
−e−θ 1 − ρ2 − 2iρ sinα

1 + ρ2 + 2ρ cosα

]
− 1

2
exp

[
−e−θ

]
+ O

(
1

k

)
.(4.27)

Figure 4.1 shows this function, evaluated at α = 0 (ω = 1). The behavior is quite
peculiar. Up to times of order ln k the perturbation stays of order 1/k � 1, then it
increases roughly exponentially up to values of order 1, and finally it decreases again
exponentially, approaching the slow manifold (4.15). Thus for very large k the initial
perturbation β(ω, 0) ∼ 1/k in some time interval can be amplified by a factor of order
k, and (4.27) shows that the leading behavior in that time interval is independent
of k.

Closer analysis shows that in terms of a formal Fourier expansion

(4.28) β̃(eiα, τ) =

∞∑
n=1

an(τ)einα,
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the amplification is carried by the low modes, n = O(1). As will be illustrated by
an explicit example below (cf. Figure 5.2(b)), in such a mode representation the time
evolution feeds the strength of the perturbation successively into lower and lower
modes. This is equivalent to the observation that the automorphism eiα → ζ(eiα, T )
drives all the perturbative structure towards α = π and smooths the remainder of the
interface. Note, however, that, starting with a perturbation ∼ ωk, in the course of
time modes n > k are also (weakly) populated to build up a complicated structure
near ω = −1. We recall that for the unregularized model ε = 0, the time evolution of
a perturbation ∝ ωk populates only modes k ≤ n [4].

4.8. Motion of the zeros of ∂ωf and cusps. So far we have shown that
the propagating circle is linearly stable; i.e., we implicitly considered perturbations of
infinitesimal strength η. The full nonlinear evolution of a finite perturbation is beyond
the scope of this paper. Still, it clearly is a question of practical interest, whether a
finite perturbation evolving under the linearized dynamics for all times satisfies the
assumptions underlying the conformal mapping approach. For the mapping to stay
conformal, all the zeros of ∂ωf(ω, τ) must stay outside the unit circle. Thus, here we
analyze the roots of the equation

(4.29) 0 = ∂ωf(ω, τ) = − 1

ω2
+ η ∂ωβ(ω, τ).

Using (4.3), (4.4), we can rewrite this equation as

(4.30) 2η

∫ 1

0

dρ ρ

[
G

(
ω + T

1 + ωT

)
−G

(
ρω + T

1 + ρωT

)]
=

1

ω
.

With our normalization (4.7) of G, for all ω in the closed unit disk the left-hand side
of this equation is bounded by 2|η|. We conclude that the bound

(4.31) |η| < 1

2

guarantees that within the framework of first order perturbation theory the mapping
stays conformal for all times. We now will show that in general this bound cannot be
improved.

For τ → ∞, zeros of ∂ωf(ω, τ) reach ω = −1, which is a consequence of the fact
that in this limit an infinitesimally small neighborhood of ω = −1 under the mapping
ω → ζ is mapped essentially on the whole complex plane. We now analyze this limit
for the simple example G(ω) = ω. Substituting this form into the asymptotic behavior
(4.17) and using the definition (4.16) of s, we find

∂ωβ =
4

2 + s
+ O(τe−τ ).

Equation (4.29) reduces to s = 4η−2, showing that a zero ω0 of ∂ωf(ω, τ) approaches
ω = −1 as

ω0 = −1 + (4η − 2)e−τ .

For ω0 to come from outside the unit circle we clearly must have

(4.32) �[η] <
1

2
.
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To get some feeling for the estimate (4.31), we note that for G(ω) = ωk the map
initially (for τ = 0) is conformal provided that |η| < 1+2/k. We conclude that under
the linearized dynamics a large part of smooth initial conditions relaxes to the circle.

Throughout this section we have assumed the initial boundary to be smooth, so
that all derivatives ∂n

ωG(ω) exist on the boundary |ω| = 1. Inspecting the results, it is
obvious that this assumption can be considerably relaxed, since only those derivatives
which show up explicitly have to exist. Thus, for exponential relaxation (4.15) outside
the neighborhood of ω = −1 to prevail, the existence of ∂ωG(ω) is sufficient, which
amounts to the condition that the curvature of the initial boundary is well defined.
For the circle to be linearly stable, as in (4.14), it is sufficient that G(eiα) is bounded
and continuous, which implies that the boundary has a well-defined slope.

If the initial boundary shows a cusp, the time evolution sensitively depends on
the details. If the cusp is found in the forward direction, so that G(ω) diverges for
ω → 1, the streamer will be strongly accelerated. In a related model [12], such an
effect has been pointed out before. Furthermore, the shape will not relax to a circle,
and the conformal map will presumably break down at finite time. If the cusp does
not affect the analyticity of G(ω) near ω = 1, it is convected towards the back and
broadened, whereas the front of the streamer approaches the circular shape. Still,
however, conformality of the map may break down at finite time.

5. Explicit examples for ε = 1. We here illustrate the general results by some
examples.

5.1. The evolution of Fourier perturbations. We first consider perturba-
tions of the form

(5.1) β[k](ω, 0) =
ωk

k + 2
, i.e., G(ω) = ωk.

The integral (4.4) is easily evaluated to yield

β[k](ω, τ) =
1

2ω2T 2

{
T k +

(
(Tω)2 − 1

)
ζk

+ k
(
1 − T 2

) [
T k − (ωT + 1)ζk +

1 + k + T 2(1 − k)

T k

·
(

ln(1 + ωT ) −
k−1∑
ν=1

T ν

ν
(ζν − T ν)

)]}
,(5.2)

where T = T (τ) and ζ = ζ(ω, T (τ)) are given by (3.9) or (3.10), respectively. In Fig-
ure 5.1 we have plotted snapshots of the resulting motion of the interface, determined
as

(5.3) z = x + iy =
1

ω
+ τ + η β[k](ω, τ), ω = eiα, 0 ≤ α ≤ 2π.

The direction of motion, i.e., the positive x-direction, is downwards. Together with
the moving interface, we show the unperturbed circular streamer at different times as
gray disks with the center moving according to

(5.4) zcm(τ) = τ +
η

2
G(T (τ)) = τ +

η

2
tanhk τ

2
,
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Fig. 5.1. Snapshots of the evolution of the streamer for k = 2 (left column) and k = 10 (right
column) at the indicated instants of time. The solid lines represent the perturbed interfaces. The
gray disks move with the center of mass velocity (5.4) of the perturbed circles. One gray disk has
been omitted for clarity. See the text for further discussion.

as predicted for the center of mass motion for the perturbed streamer in (4.10).
In Figure 5.1 we perturbed the circle by η β[k], k = 2 or k = 10, using the same

parameter η = 0.6eiπ/4 in both cases. The starting position for k = 10 is shifted
relative to that for k = 2 by a distance corresponding to Δτ = ln 5. As discussed
below (4.27), for 1 � k1 < k2 we expect

β[k1](ω, τ) ≈ β[k2](ω, τ + ln(k2/k1)).

Figure 5.1 illustrates that such a “universality” for the gross structure holds down to
very small k. (Of course the choice of differing values of η would distort the figures
and mask this feature.) Basically during time evolution the initial maximum closest
to the forward direction is smeared out and builds up the asymptotic circle, whereas
all other structures are compressed at the backside. For k = 10 the complicated
structure at the back is magnified in Figure 5.2(a). Figure 5.2(b) shows the time
dependence of the coefficients an of the low modes einα in the expansion (4.28), again
for k = 10. It illustrates how the strength of the perturbation cascades downwards
in n and increases in time, until it is completely absorbed into the lowest mode, i.e.,
the overall shift of the circle. We should recall, however, that modes n > k are also
weakly populated to build up the structure at the back.
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a) -1.1 -1.05 -1

-0.4

-0.2

0

0.2

b)
0.2 0.4 0.6 0.8

0

0.2

0.4

0

0.2

0.4

Fig. 5.2. (a) Magnified plot of the backside of the streamer for k = 10, η = 0.6 eiπ/4 (as in the
right column of Figure 5.1) for the τ values given. The overall motion is subtracted. We observe the
compression of the fine structure and the intermediate growth of the perturbation. Asymptotically
for τ → ∞, the structure converges to the gray circle. In the comoving frame, the gray dot marks
x + iy = −1, which is the point to which the structure finally is contracted. Note that the scale of
x is stretched compared to that of y, and that the figure is turned relative to Figure 5.1. (b) The
amplitudes an as in (4.28) as a function of T for k = 10; the values of n are given.

Fig. 5.3. Motion of the zeros of ∂ωf in the ω-plane for k = 2 and η = 0.6 eiπ/4 (as in the left
column of Figure 5.1). The dots give the position for τ = 0, 1, 2. The horizontal line is the cut for
τ = 2.51, where one zero enters the second sheet (broken curve). The unit disk is also shown.

For k = 2, Figure 5.3 shows the motion of the zeros of ∂ωf(ω, τ) in the complex
ω-plane, as discussed in section 4.8. It corresponds to the k = 2 part of Figure 5.1.
Two zeros, which initially are close to the backside of the unit circle, approach ω = −1
for τ → ∞. They clearly are associated with the two maxima that in the comoving
frame are convected towards z = x + iy = −1. The third zero, originally found close
to ω = +1, after a large excursion leaves the physical sheet at time τ � 2.51. The
logarithmic cut is on the negative axes, with the branchpoint ωbp = −1/T (τ) reaching
ω = −1 for τ → ∞.

5.2. The evolution of localized perturbations. We finally consider some
more localized perturbation, defined by
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-0.2 0.2 0.4 0.6
0.7

0.9

1.1

Fig. 5.4. (a) Time evolution of a localized perturbation as described in the text. (b) Evolution
of the initial peak for shorter times as indicated. The overall motion of the streamer is subtracted.
A part of the asymptotic circle is shown in gray.

(5.5) G(ω) =
(1 − γ)eiα0

ω − γeiα0
, γ > 1,

corresponding to an initial perturbation

(5.6) η β(ω, 0) = η
(1 − γ)γ

ω2
e2iα0

[
ln

(
1 − ω

γ
e−iα0

)
− ω

γ
e−iα0

]
.

The result for β(ω, τ) reads

(5.7) β(ω, τ) =
(γ − 1)eiα0

γe−iα0 − T (τ)

{
T (τ)

2b(τ)
−
(

1 − T (τ)

b(τ)

)
ln(1 + b(τ)ω) − b(τ)ω

(b(τ)ω)2

}
,

where

(5.8) b(τ) =
1 − T (τ)γeiα0

T (τ) − γeiα0
.

We note that b(τ) → 1 for T (τ) → 1, so that in the large time limit the logarithmic
cut reaches ω = −1. As discussed in the context of (4.17), this is a generic feature
of the present problem. Our choice of parameters (γ = 1.1, α0 = −π/12, η = 1.5)
almost produces a cusp in the initial condition: The only zero of ∂ωf(ω, 0) is found at
ω0 = 1.001 exp(−.243i). This zero, however, is driven away from the unit circle and
leaves the physical sheet. Another zero, which entered the physical sheet somewhat
earlier, for τ → ∞ reaches ω = −1. Figure 5.4(a) shows snapshots of the time
evolution of the perturbed interface in a representation like Figure 5.1. It illustrates
how the peak is rapidly smeared out and the interface becomes smooth. Figure 5.4(b)
follows the evolution of the peak for short times and shows how it is convected and
broadened.
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We finally note that, in the special case where the initial peak strictly points
in the forward direction (α0 = 0), convection cannot take place. The peak simply is
broadened and vanishes, whereas some new peak shows up at the back for intermediate
times.

Appendix A. The limit ε → ∞. For ε → ∞, the PDE (3.7) with the form
(3.11) of Lε reduces to

(A.1)
(
h(ζ, T ) ∂ζ + 1

)
∂T β̂(ζ, T ) = 0, where β̂(ζ, T ) ≡ β(ω, τ).

Equation (A.1) allows for a large set of solutions obeying the same initial condition

(A.2) β(ω, 0) = β0(ω),

but imposing regularity on the unit disk Uω, we single out the simple form

(A.3) β(ω, τ) = β0(ζ).

Thus for ε = ∞, the dynamics is simply given by the automorphisms ω −→ ζ(ω, T ).
This implies that β(ω, τ) is bounded uniformly in τ as

(A.4)
∣∣β(ω, τ)

∣∣ ≤ max
ω∈∂Uω

∣∣β0(ω)
∣∣,

so that in contrast to the case ε = 1, there is no intermediate growth of the pertur-
bations.

The shift of the center of mass is given by (cf. (4.10))

(A.5) β(0, τ) = β0(T (τ)) = β0(1) − 2β′
0(1) e−τ + O

(
e−2τ

)
,

and except for the point ω = −1, the shape again converges exponentially in time to
the circle along the universal slow manifold

(A.6) β(ω, τ) − β(0, τ) = β′
0(1)

4ω

1 + ω
e−τ + O

(
e−2τ

)
;

cf. (4.15) for ε = 1. Again the neighborhood of ω = 1 for time τ = 0, more precisely
β0(1) and β′

0(1), determines the long time convergence. Since by assumption β0(ω) is
analytical at ω = 1, evidently an eigenfunction expansion in the sense of subsection 4.5
exists.

The only major difference compared to the case ε = 1 concerns the point ω = −1.
Clearly,

(A.7) β(−1, τ) ≡ β0(−1)

independently of τ , and indeed for τ → ∞ the conformality of the mapping breaks
down in the neighborhood of ω = −1 since ∂ωβ(ω, τ)

∣∣
ω=−1

diverges.
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